
 
© 2007 Alberto Dell'Era                                                                                                                                                1  

New Density calculation in 11g 
Alberto Dell'Era 
alberto.dellera@gmail.com 

ABSTRACT 

 

A short note on the new formula for the "density" statistic used internally by the Oracle™ Cost Based Optimizer in 11g. 
_________________________________ 

 

Introduction 

 

Starting from 11g (11.1.0.6), the CBO does not use anymore the old statistic "density" computed by dbms_stats and 

stored in the data dictionary, but instead computes internally a new value (named NewDensity in 10053 trace files) 

which is used to estimate the cardinality of SQL statements when histograms are present.  

 

The CBO classifies at runtime the histogram type (since the histogram type is not stored in the data dictionary) using a 

heuristic (probably a formula similar to the one exposed in the view DBA_TAB_COLUMNS for column 

HISTOGRAM). If the histogram is deemed an HB, the formula we are going to see in a moment is used; if is 

considered a FH, the traditional setting of 0.5 / num_rows is used instead. 

 

The new setting is controlled by the hidden (and so not to be changed without the approval of Oracle Support) 

parameter _optimizer_enable_density_improvements; setting this parameter to false gets back the old behavior. 

 

Note: for simplicity, we are going to consider only not-null values. Corrections for columns containing nulls are 

relatively trivial. 

Acknowledgments 
 

Thanks to Wolfgang Breitling for reading the first version of this note, and pointing out some weak points. 

NewDensity for histograms classified as Height-Balanced 
 

The script 11g_NewDensity_base_case.sql creates table T with 15 rows, with a skewed data distribution for column 

VALUE, and computes a histogram with SIZE N, N=5. 

 

The histogram from DBA_HISTOGRAMS, plus two computed columns we are going to use below, is: 

  
     VALUE         EP        BKT POPULARITY 
---------- ---------- ---------- ---------- 
         1          0          0          0 
         2          2          2          1 
         9          3          1          0 
        15          5          2          1 

 

• VALUE is DBA_HISTOGRAMS.ENDPOINT_VALUE and EP is DBA_HISTOGRAMS.ENDPOINT_ 

NUMBER.   

 

• BKT is simply EP - previous (EP), and can be considered the number of buckets "covered" by the value in the 

uncompressed histogram. It's worth remembering that when dbms_stats computes an HB of SIZE N it sorts the 

column values first, then samples the sorted set on an uniform grid of width approximately equal to 

num_rows/N, labels the samples with EP=1..N, adds the minimum value as EP=0, removes the samples whose 

VALUE is equal to the next (compression), and eventually stores the remaining (EP, VALUE) pairs in the data 

dictionary. For more information, see [Dell'Era, JOH, page 4, "Height-Balanced Histograms"], [Breitling, 

HMF, page 1], [Lewis, CBO, page 169]. 

 

• POPULARITY is 1 if the value is a popular one, zero otherwise. A value is considered popular if BKT>1, that 

is, if it was sampled more than once on the uniform grid. See the same papers quoted above for more 

information. 

 



 
© 2007 Alberto Dell'Era                                                                                                                                                2  

In 11.1.0.6, in the 10053 trace for "where value=<unpopular value>", we find: 

 
Column (#1):  
NewDensity:0.050000, OldDensity:0.066667 BktCnt:5, PopBktCnt:4, PopValCnt:2, NDV:6 
Using density: 0.050000 of col #1 as selectivity of unpopular value pred 

 

• OldDensity is the density stored in the data dictionary; here the CBO decides to ignore it and to use the brand-

new NewDensity instead. 

• BktCnt is max(EP), which is the same as N for HB histograms (the number of buckets in the uncompressed 

histogram), here equal to 5. 

• PopBktCnt is the number of popular buckets, that is, sum(BKT) for all popular values. We have two popular 

values, 2 and 15, for a total of 2+2=4. 

• PopValCnt is the number of popular values (we have two: 2 and 15). 

• NDV (Number of Distinct Values) is num_distinct from DBA_TAB_COLUMNS. 

 

The formula for NewDensity is 

 
NewDensity = [(BktCnt - PopBktCnt) / BktCnt] / (NDV - PopValCnt) = 
           = [(5 - 4) / 5] / (6-2) = .05 (as required) 

 

I have validated the formula above using an automated script (not shown here) that builds thousands of value 

distributions and checks the formula against the CBO output. 

Rationale for the NewDensity formula 
 

It is well-known that when the CBO doesn't know the value distribution of a column (no histogram is collected), it 

assumes a uniform distribution, that is, assumes that every distinct value in the column occurs as frequently as any other 

distinct value. This is because without any other information, this is the simplest distribution one can assume. 

 

Assuming a uniform distribution mathematically (statistically) translates into estimating the cardinality of a filter 

predicate such as "where column=constant" as num_rows / num_distinct, that is, each distinct value is assumed 

occurring num_rows / num_distinct times. This is exactly what the CBO does for columns without histograms. 

 

If an HB histogram computed with SIZE N is available, we can (conceptually) divide the table in a Populars SubTable 

(PST), that contains all popular values, and a Not-Populars SubTable (NPST), that contains all the other values 

(whether they are represented in the histogram or not). Our filter predicate "where column=constant" will select values 

from one of the two SubTables. 

 

When the filter predicate selects from the PST, density (or NewDensity) is not used, since the CBO can simply search 

for "constant" in the histogram and then easily compute a good estimate; but when the filter predicate selects from the 

NPST, searching for "constant" in the histogram is useless. The reason for this uselessness is simple but requires some 

space to be illustrated effectively, so I'll point the interested ones to [Dell'Era, JOH, page 4-6] instead of rehashing the 

same material
1
. 

 

Not being able to use the histogram is equivalent to say that the distribution of values in the NPST is not known, that is, 

the real distribution is not represented in the histogram. And since the CBO has no other information available to factor 

in the real distribution, it resorts to assuming a uniform distribution for the NPST, and applying the formula used for 

columns without histograms on the NPST. 

 

This is easily shown - if the NPST were actually materialized in an actual table with statistics collected (of course, with 

no histogram), the estimated cardinality for our filter predicate would be  

 
   cardinality = num_rows(NPST) / num_distinct (NPST) 
 

but  

 
   num_rows(NPST) = [(BktCnt - PopBktCnt) / BktCnt] * num_rows (table) 
   num_distinct (NPST) = NDV - PopValCnt 
 

                                                 
1
 To link the two paper material, keep in mind that "COUNTS" in the other paper is the same as "(BKT / BktCnt) * 

num_rows" in this. 



 
© 2007 Alberto Dell'Era                                                                                                                                                3  

hence 

 

   cardinality = NewDensity * num_rows (table) 
 

And in fact, NewDensity * num_rows is exactly the formula the CBO uses for "where column=constant" when constant 

is not a popular value. 

 

NewDensity is used in 11g also to estimate the cardinality of a join. This is not surprising since a join has a strong 

relation with filter predicates (a join is nothing else, conceptually, than a nested loop, where the inner table is probed 

with filter predicates). I have verified that the same formula described in [Dell'Era, JOH] applies in 11g (11.1.0.6 while 

I'm writing this) once you substitute "density" with "NewDensity". 

NewDensity for histograms classified as Frequency 
 
When the CBO classifies at runtime the histogram as "Frequency", the formula for NewDensity becomes simply the 

traditional 0.5 / num_rows.  

 

If we run script 11g_NewDensity_base_case.sql again, but collecting a Frequency Histogram (i.e. using SIZE 254) 

instead of an HB one, in the 10053 trace file we find, again for "where value=<unpopular value>": 

 
Column (#1):  
NewDensity:0.033333, OldDensity:0.033333 BktCnt:15, PopBktCnt:11, PopValCnt:2, NDV:6 
Using density: 0.033333 of col #1 as selectivity of unpopular value pred 

   

So NewDensity = 0.5 / num_rows = 0.5 / 15 = 0.033333333, which is incidentally the same value computed by 

dbms_stats and shown above as "OldDensity". 

 

Histogram type classification mistakes (for FHs) 
 

The script 11g_NewDensity_base_case.sql offers a nice opportunity to show what happens when a histogram which is 

structurally a Frequency one is mistaken at runtime for an HB, and so the formula for HB is used. Deceiving the CBO is 

as easy as (in this case) changing the statistic density by using the procedure set_density provided in the script, which 

sets density preserving the histogram. 

 

If we increase density from 0.033333333 to 0.2 we get: 

 
Column (#1):  
NewDensity:0.066667, OldDensity:0.200000 BktCnt:15, PopBktCnt:11, PopValCnt:2, NDV:6 
Using density: 0.066667 of col #1 as selectivity of unpopular value pred  
   
NewDensity = [(BktCnt - PopBktCnt) / BktCnt] / (NDV - PopValCnt) =  
             [(15 - 11) / 15] / (6 - 2) = .066666667 (as required) 

   

It is interesting to note that .066666667 is simply 1.0 / num_rows, and moreover, it can be shown mathematically that it 

is always the case: the HB formula above, when applied to histograms that are structurally FH, always gets back 1.0 / 

num_rows. 

 

Is this bad? For our filter predicate "where value=<unpopular value>" is it exactly the same, since the cardinality 

estimate num_rows*NewDensity is always rounded (up), and of course round (0.5) = round (1). Actually, the formula 

for HB is more accurate - it estimates the correct cardinality even without rounding. 

 

Here's a scenario where setting NewDensity = 1.0 / num_rows gets much more accuracy.  

 

The scenario is that of a pseudo-parent table and a pseudo-child one. "Pseudo" because we are going to slightly violate 

(one single exception) the uniqueness constraint on the parent; this is to reproduce the typical scenario of applications 

that try to manage constraints by themselves, without enforcing PK/FK constraints in the database, a sure way to 

experience at least slight constraint violations in the tables. 

 

 

 

 



 
© 2007 Alberto Dell'Era                                                                                                                                                4  

Script 11g_NewDensity_frequency_HBformula_is_better.sql builds the scenario: 

 
  -- parent table with 100 unique values  
  create table parent as select rownum-1 value from dual connect by level <= 100; 
  -- child table with the same 100 distinct values  
  create table child as select mod(rownum-1,100) value from dual connect by level <= 1000; 
 

and then computes histograms with SIZE 254 on both tables.  

Incidentally, it makes perfect sense to build a histogram on a column with unique values (parent.value) if, for example, 

other queries apply range predicates on the column (where parent.value < ..., where parent.value between ...) and there 

are outliers (e.g. parent.value contains approximately equally-spaced values, say 1,2,3,4 and then an outlier such as 

999). Skewness is not only about different distinct value multiplicity.  

 

The join over the pseudo-FK gets: 

 

select count(*) from parent, child where parent.value = child.value; 

 
    COUNT(*) 
  ---------- 
        1000 
       
  ---------------------------------------------- 
  | Id  | Operation           | Name   | Rows  | 
  ---------------------------------------------- 
  |   0 | SELECT STATEMENT    |        |     1 | 
  |   1 |  SORT AGGREGATE     |        |     1 | 
  |*  2 |   HASH JOIN         |        |  1001 | 
  |   3 |    TABLE ACCESS FULL| PARENT |   100 | 
  |   4 |    TABLE ACCESS FULL| CHILD  |  1000 | 
  ---------------------------------------------- 

 

So the cardinality is estimated with fantastic accuracy. This is because the histogram on the unique column parent.value 

is classified at runtime as an HB, and density set to 1.0 / num_rows(parent); how density (or NewDensity) influences 

the join cardinality estimation is explained in [Dell'Era, JOH], and here the only important contributor is what I call the 

"populars not matching populars" one in the paper. 

 

The script continues by making a single violation of the uniqueness: 

 
  insert into parent (value) values (1000); 
  insert into parent (value) values (1000); 
 

This produces: 

 
    COUNT(*) 
  ---------- 
        1000 
 
  ---------------------------------------------- 
  | Id  | Operation           | Name   | Rows  | 
  ---------------------------------------------- 
  |   0 | SELECT STATEMENT    |        |     1 | 
  |   1 |  SORT AGGREGATE     |        |     1 | 
  |*  2 |   HASH JOIN         |        |   506 | 
  |   3 |    TABLE ACCESS FULL| PARENT |   102 | 
  |   4 |    TABLE ACCESS FULL| CHILD  |  1000 | 
  ---------------------------------------------- 
 

This is because the histogram on parent.value is now structurally a FH, it is classified as such at runtime, and so 

NewDensity is set to 0.5 / num_rows (parent). The net effect is that the cardinality is badly estimated with 

approximately a 50% error (506 / 1000). 

 

What if NewDensity were set to 1.0 / num_rows (parent) instead? The last section of the script checks this, by manually 

setting density = 1.0 / num_rows and setting _optimizer_enable_density_improvements=false (not a recommended 

setting at all, it is done here just to simulate a setting of NewDensity = 1.0 / num_rows). The result is: 

 
    COUNT(*) 
  ---------- 
        1000 
 
  ---------------------------------------------- 
  | Id  | Operation           | Name   | Rows  | 
  ---------------------------------------------- 
  |   0 | SELECT STATEMENT    |        |     1 | 
  |   1 |  SORT AGGREGATE     |        |     1 | 
  |*  2 |   HASH JOIN         |        |  1011 | 



 
© 2007 Alberto Dell'Era                                                                                                                                                5  

  |   3 |    TABLE ACCESS FULL| PARENT |   102 | 
  |   4 |    TABLE ACCESS FULL| CHILD  |  1000 | 
  ---------------------------------------------- 

 

So, we would be back to fantastic accuracy. 

 

So in conclusion: the NewDensity formula for HBs, when applied to FHs, sets NewDensity = 1.0 / num_rows instead of 

0.5 / num_rows, and the former seems to get better cardinality estimation accuracy than the latter. So there's nothing to 

be concerned (quite the opposite) if that happens - one might perhaps be concerned about the opposite, that is, if a HB 

were classified at runtime as a FH by mistake.  

NewDensity for 9i and 10g? 
 

Since the old density formula is deemed obsolete in 11g, and superceded by NewDensity, it is probably worth 

considering setting manually density in 9i and 10g (the set_density procedure used in the scripts can make this easily) 

using the formula for NewDensity (the variation for HBs can be computed by using the "newdensity" view in 

11g_NewDensity_base_case.sql). As per the above discussion, it is probably worth using the HB formula whatever the 

histogram type is. 

 

I wouldn't do it for every table in the database, but only for the "problematic" ones, of course testing the effect of this 

setting in my scenario. Yet, it is an interesting troubleshooting option. 

 

 

Bibliography 
 

 

[Lewis, CBO] Jonathan Lewis, Cost Based Oracle: Fundamentals, Apress, 2006, ISBN 978-1590596364. 

[Breitling, HMF] Wolfgang Breitling, Histograms - Myths and Facts, http://www.centrexcc.com 

[Dell'Era, JOH] Alberto Dell'Era, Join Over Histograms.  

Available on www.adellera.it/investigations/join_over_histograms 

[Dell'Era, SWR]  

 

Alberto Dell'Era, Select without replacement 

Available on www.adellera.it/investigations/select_without_replacement 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
© 2007 Alberto Dell'Era                                                                                                                                                6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper version: 1.1, 2007-12-11 

Converted into pdf  format by PrimoPdf, configuration "_prepress.ini" 


